Ptá se na věci, co jsou v Summary
Lecture 1
- Image
- Continuous
- Digital
- How to derive from disc with Taylor series
- Cont → Disc: Taylor expansion
- Approx the cont derivative using Disc formulas
- Derive the forward/backward/central difference formula (01/21)
- Precision of the approx (by the order - u O(h^2) se mění mocnina)
- Zbytek není tak důležitej
Lecture 2 - Linear Diffusion
- How the diffusion equation works (02/07)
- Analytic solution of the equation
- Gaussian filter → Convolution/FFT/Diffusion equation
- Time ~ Sigma parameter
- Can ask properties of Scale space
- Discretizing of the formula, how we solve the eq (cont→disc)
- Neumann boundary pochopit
Lecture 3 - Nonlinear Isotropic Diffusion
- What is diffusion, How it is defined (physical bg, 03/15), Fick’s law
- Diffusivity (g) - what it describes, flux (-g * grad(u))
- u_t = div(g * grad(u)); u(x, 0) = f(x) ⚠️ (initial condition)
- g is scalar now, a tensor in NAD
- Classification - differenced between diffusions, how to do NID with NAD, how to set the tensor D at that case, …
- Different diffusivity functions (3 co tam jsou, vědět, že můžou být další), Contrast parameter (what it does = how large diff you will have at a particular point), smaller lambda ~ smaller diffusivity